В Турбо не нужно фармить – вы деретесь с первой минуты
Чаще всего я играю на керри, и меня дико раздражает отрезок игры после линий, когда ты вынужден фармить минут 10-15, прежде чем полноценно вступить в игру. Серьезно, я захожу в Доту не для того, чтобы бить крипов – а чтобы бить лица противников. И в Турбо ты делаешь это буквально с первой минуты.
В этом режиме убрано все лишнее – долгий фарм предметов, походы на базу для регенерации, длительный пуш вышек. Все заточено на драки и только на драки. Если классическую Доту можно сравнить с футбольным матчем, где за 90 минут забивают в среднем 2-3 мяча, то Турбо – это безбашенная хоккейная перестрелка со счетом 8:5.
Двигатели с системой наддува Twin-Turbo
Представим себе, как действует турбина. Она создает определенное давление воздуха, закачиваемого в цилиндры двигателя. В процессе роста оборотов эффективность турбины снижается и, мощность мотора падает. Чтобы исключить падение мощности и обеспечить прирост даже на высоких оборотах, была установлена вторая аналогичная турбина.
Примечательно, что в работу турбины могут вступать по-разному. К примеру, можно настроить турбины таким образом, чтобы они действовали параллельно, либо же, есть возможность настроить так, чтобы сначала давление нагнетала одна турбина, затем, когда ее мощности становится недостаточно, подключалась вторая и, таким образом, компенсировала потерю.
Стоит вспомнить, что система наддува Twin-Turbo может устанавливаться как на V-образные двигатели, так и на рядные, здесь нет особой разницы.
Вакуумный, электронный и гибридный тип актуатора
- В структуре электронного актуатора турбины есть свой блок управления, а также электромотор. Мотор двигает шток, открывающий клапан овербуста.
- Вакуумный актуатор дополнительно управляет изменяемой геометрией. Он открывает и, когда необходимо, закрывает клапан вестгейта. Агрегат срабатывает, если давление газов становится избыточным.
- Существуют также гибридные актуаторы турбины. На управляющем входе они дополнительно имеют воздушный редуктор.
Конструкция клапанов управления ТКР может немного отличаться, в зависимости от вида устройства. Основные комплектующие: корпус, рычаг, управляющий порт, диафрагма и пружина
Корпусная деталь актуатора разделена мембраной на камеру, из которой выдвигается подпружиненный шток механизма, а также камеру, впускающую воздух.
Чистка клапана управления турбиной
Иногда актуатор перестает работать по причине засорения. В камере механизма создается вакуум, нарушение герметичности корпуса провоцирует подсос воздуха. В корпус засасывает частички масла, пыль и влагу. Затягивает мусор внутрь и через втулку штока.
При засорении обязательно нужно почистить актуатор. Иначе мелкий мусор разрушит мембрану, а влага спровоцирует развитие коррозии корпуса. Постепенно ржавчина «съест» и пружину.
В сервисе чистку производят после полной проверки и разборки актуатора. Шток, корпус и рабочую тарелку очищают механическим способом. Также выполняется продувка комплектующих сжатым воздухом. В завершении элементы клапана помещают в ультразвуковую ванну. Далее производится сборка, проверка и установка агрегата на турбину.
Вернуться в блог статей
🚘 Что такое турбо вестгейт?
Вестгейт, также называемый предохранительный клапан, часть турбо вашего автомобиля. Его пилотирует расчета двигателя для регулирования давления, получаемого в приемная палата. Таким образом, его роль двоякая: он нагнетает в двигатель окислитель и сбрасывает избыточное давление.
Точнее, он действует как клапан, целью которого является защита механических элементов двигателя путем ограничения давления выхлопных газов, когда они проходят через турбину двигателя. турбокомпрессор.
Таким образом, перепускной клапан позволяет происхождение этих газов чтобы они не проходили через турбонагнетатель, ограничивая тем самым скорость вращения крыльчатки компрессора. Форма вестгейта очень близка к форме клапанов двигателя. В отличие от двигателей, они не находятся под эгидой распредвал но силой шин.
Сегодня существует два перепускных устройства:
- Внутренний вестгейт : он встроен в корпус турбины турбонагнетателя и позволяет получать мощность по очень доступной цене. Он присутствует в подавляющем большинстве дизельных двигателей;
- Внешний вестгейт : он имеет механизм, отдельный от корпуса турбины турбонагнетателя. Этот тип перепускного клапана позволяет достичь большей мощности и лучше регулируется, чем внутренний перепускной клапан. Однако для этого нужен другой выпускной коллектор.
В некоторых случаях внешний перепускной клапан может быть установлен на турбокомпрессор, который уже имеет внутренний перепускной клапан с использованием специальной прокладки.
Базовые руководящие принципы
Влияние размеров компрессора и турбины на характеристики системы будет целиком следовать этим руководящим принципам:
Компрессор
Компрессор имеет определенную комбинацию расхода воздуха и давления наддува, при которой он является наиболее эффективным. Хитрость в выборе оптимального размера компрессора состоит в том, чтобы расположить точку максимальной эффективности в наиболее используемом диапазоне оборотов двигателя. В процессе выявления наиболее полезного диапазона оборотов придется немного подумать. Не забывайте, что всегда, когда эффективность компрессора снижается, тепловыделение, производимое турбонагнетателем, увеличивается. Если был выбран такой размер турбонагнетателя, что максимальная эффективность приходится на первую треть диапазона оборотов двигателя, эффективность на максимальных оборотах и в близких к тому режимах будет настолько низкой, что температура воздуха на впуске будет просто обжигающей. В другом крайнем случае, если максимальная эффективность системы достигается ближе к предельным оборотам двигателя, температура на средних оборотах вполне способна выйти за разумные пределы. Нагнетатель такого размера был бы полезен только для двигателя, работающего на этих оборотах, вроде мотора автомобиля Bonneville. Где-то в середине диапазона оборотов двигателя находится наилучшее место, чтобы расположить там точку максимальной эффективности компрессора.
Большие или малые размеры компрессора не оказывают критического влияния на инерционность турбонагнетателя или на порог наддува. Рабочее колесо компрессора — самая легкая вращающаяся часть турбонагнетателя, следовательно, его вклад в полную инерцию вращающегося ротора довольно низок. Порог наддува — главным образом функция скорости турбонагнетателя, которая управляется турбиной.
Рис. 3-2. С небольшим турбонагнетелем точка максимальной эффективности достигается рано, и минимум тепловыделения будет на низких давлениях наддува. Чтобы снизить температуру при достижении большой мощности, необходим большой турбонагнетатель.
Часто выбор турбонагнетателя производится под влиянием других факторов, а не из соображений оптимальной термодинамики или максимальной мощности. Стоимость автомобиля, например, может определять число турбин. Нелепо было бы надеяться увидеть Ferrari V- 12 с одним турбонагнетателем или Mazda Miata с двумя. Стоимость также играет важную роль при проектировании деталей системы. Если требуется низкая цена, возможно даже отказаться от жидкостного охлаждения корпуса подшипника в пользу более частой замены масла.
Рис. 3-3.Когда точка максимальной эффективности находится на более высоких оборотах, это означает более низкую температуру воздуха в этом режиме. Более низкая температура даёт более плотный воздух, который обеогечивает пик момента на более высоких оборотах.
В конечном счете, реальная потребительская ценность выбранного оборудования будет зависеть не только от мощности, термодинамических коэффициентов или числа турбин. Скорее, это будет выражаться в том, каким образом Ваша машина ведет себя на дороге. Она в самом деле быстра, и ее скорость прекрасно Вами ощущается? Она действительно отзывчива на педаль и легко бежит? Она плавно и непринужденно разгоняется до максимальных оборотов? Она заставляет Вас улыбаться, когда никто вокруг не увидит вашей улыбки?
Начните с выбора нескольких кандидатов на роль Вашего компрессора, чьи степень повышения давления и расход воздуха, согласно их картам, находятся в требуемом диапазоне оборотов при значении эффективности не ниже 60 %. Когда Вы отсеете заведомо непригодные устройства и остановитесь на двух-трёх вариантах, необходимо будет произвести некоторые расчеты, чтобы выбрать между ними.
Турбина
Задача турбины — осуществлять привод компрессора, при этом она должна раскручивать его до достаточных оборотов, чтобы он мог обеспечить требуемый расход воздуха при заданном давлении наддува. Небольшая турбина будет вращаться быстрее, чем большая при той же энергии выхлопных газов. Однако меньшая турбина является большим сужением на пути потока этих газов, что приводит к образованию обратного давления между турбиной и камерой сгорания. Обратное давление — нежелательный побочный эффект турбонагнетателя, и нужно иметь это ввиду. В действительности, при выборе турбины нужно ориентироваться на обороты, достаточные для обеспечения желаемой реакции и давления наддува, воздерживаясь от минимизации обратного давления.
Отличия турбо дрожжей от обычных
В начале хотелось пояснить разницу, которая ощущается во время брожения браги. Грибки с приставкой турбо:
Классические турбо дрожжи С 48 (фирма Double Snake).
- Могут переработать большую концентрацию сахара. Именно по этой причине под конец брожения крепость может составлять 18–20%, а не 12%, как у обычных дрожжей.
- Быстрее работают. За 2–3 дня весь сахар сбраживается. В случае с прессованными грибками этот процесс может длиться до 10 дней.
- Стоят ощутимо дороже. Исходите из формулы: 20 литров браги — 200 рублей на дрожжи. Обычные стоят в 5 раз дешевле.
- Требуют определенных температур. В промежутке между 20–30 градусами происходит оптимальное брожение браги. На упаковке всех продуктов с приставкой «турбо» пишутся свои температурные режимы, которые крайне рекомендуется выдерживать. Только в этом случае брожение будет идти так, как написано в инструкции.
Регулировка тяги вестгейта
Сам по себе рычаг свободно перемещается, качаясь на креплении. Если это не так, и он не двигается свободно, когда отсоединен от тяги регулировочного клапана, значит есть какая-то проблема и что-то ему мешает. Это нужно исправить.
Иногда рычаг двигается рывками, особенно при нагревании. Длина самой тяги активатора может варьироваться, таким образом регулируя степень открытости/закрытости вестгейта.
Затягивание конца будет укорачивать тягу регулировочного клапана, расслабление — удлинять ее. Если тяга короче, клапан более плотно закрыт, и активатору требуется большее давление чтобы открыть клапан.
Результат — большее давление, более быстрое раскручивание турбины, и перепускной клапан не открывается так сильно и так быстро. И наоборот при ослаблении тяги.
Если вы используете контроллер с обратной связью, который сам меряет и контролирует давление (это обычное дело для электронных контроллеров), то регулировка тяги перепускного клапана — не даст такого же эффекта, как она дает при отсутствии обратной связи.
Это происходит потому, что контроллер «принимает во внимание», произошедшие изменения, поэтому такая регулировка будет сказываться незначительно. Кроме того, хороший электронный контроллер держит перепускной клапан закрытым (давление на активаторе 0 psi), до тех пор пока не будет набран нужный уровень — таким образом набор давления происходит гораздо быстрее
Технология TwinPower Turbo
Технология BMW TwinPower Turbo нового четырехцилиндрового двигателя. Этот новый двигатель является самым мощным агрегатом нового поколения четырехцилиндровых бензиновых двигателей. Силовые агрегаты основываются на базовом двигателе с оптимизированным внутренним трением, на мощность которого в первую очередь влияет технология впрыска и наддува. С точки зрения конструкции двигатель ориентируется на современный, многократно отмеченный призами рядный шестицилиндровый двигатель с технологией BMW TwinPower Turbo, который в своем классе стал эталоном динамичного набора мощности и впечатляющей эффективности. К компонентам этой не имеющей мировых аналогов технологии относятся непосредственный высокоточный впрыск High Precision Injection, наддув по принципу Twin Scroll, система бесступенчатого регулирования фаз газораспределения Double VANOS и система регулирования хода клапанов VALVETRONIC. Вооруженный таким образом силовой агрегат нового BMW 328i достигает диапазонов мощности, которые традиционные атмосферные двигатели реализуют только с большим числом цилиндров и рабочим объемом. Вместе с тем конструкция двигателя с цельноалюминиевым блоком цилиндров легче и компактнее, чем конструкция шестицилиндрового двигателя аналогичной мощности. Преимущества в динамичности очевидны: благодаря сниженной нагрузке на передней оси спортивный седан BMW дополнительно повысил маневренность и демонстрирует оптимизированную управляемость и поворачиваемость.
Наддув по принципу Twin Scroll. Наддув нового четырехцилиндрового двигателя осуществляется по принципу Twin Scroll (турбонагнетатель с двумя «улитками»): потоки ОГ цилиндров 1 и 4, а также цилиндров 2 и 3 отдельно по спирали направляются на турбинное колесо. Таким образом при низких оборотах возникает лишь незначительное противодавление ОГ и эффекты пульсации давления потоков газа могут использоваться наиболее эффективно. В результате двигатель чутко реагирует на каждую команду педали акселератора и быстро набирает обороты, которые клиент BMW реализует непосредственно в удовольствии от управления.
VALVETRONIC, Double VANOS и непосредственный впрыск. Высокая мощность при сниженных вредных выбросах достигается благодаря использованию системы бесступенчатого регулирования хода клапанов VALVETRONIC и системы бесступенчатого регулирования фаз газораспределения Double VANOS. Система VALVETRONIC новейшего поколения оснащается оптимизированным серводвигателем со встроенным датчиком и работает с более высокими скоростями регулирующего воздействия. Поскольку регулировка хода клапанов на стороне впуска осуществляется плавно, можно отказаться от общепринятой дроссельной заслонки. Так как управление массой воздуха происходит внутри двигателя, удалось оптимизировать реакции силового агрегата, а потери на дросселирование при газообмене свести к минимуму. Кроме того, высокая эффективность двигателя обеспечивается благодаря непосредственному высокоточному впрыску бензина High Precision Injection. Топливо впрыскивается электромагнитными форсунками, расположенными по центру между клапанами. Поскольку впрыск осуществляется в непосредственной близости от свечи зажигания и с максимальным давлением 200 бар, обеспечивается равномерное и чистое сгорание. Кроме того, охлаждающее воздействие топлива, впрыскиваемого непосредственно, способствует более высокой степени сжатия, чем в двигателях с впрыском во впускной коллектор, что дополнительно повышает КПД.
Как проверить актуатор турбины
Работоспособность актуатора турбины можно проверить несколькими способами: без демонтажа и со снятием узла. Лучше механизм демонтировать, так удобнее обследовать деталь на наличие ржавчины.
Во время проверки следует тщательно осмотреть корпус клапана управления турбиной. Вмятины и другие повреждения могут повлиять на ход штока. Если шток не будет доходить до верхнего положения, мощность турбины упадет.
Когда актуатор снят, в первую очередь вы должны проверить основание штока. Коррозии там быть не должно. Если она есть, значит и внутри деталь будет ржавой. Без чистки шток может заклинить.
Для проверки мембраны актуатор приходиться демонтировать. В вакуумном клапане шток заходит внутрь. Часто эти клапаны ставят на турбину спринтера объемом 2,2 л. Самостоятельно такой тип клапана проверить довольно просто:
- Штоком упираемся в твердую поверхность и надавливаем на актуатор
- Когда шток задвинется до упора, с противоположной стороны закрываем пальцем входное отверстие
- Перестаем вдавливать шток
- Держим палец на отверстии 10-20 секунд
- Открываем входное отверстие
Если во время проверки шток самостоятельно вышел и шипящего шума не было слышно, значит мембрана актуатора нормально функционирует.
Работающий на давление актуатор проверить сложнее, так как его шток выходит наружу и внутри установлена слишком жесткая пружина. Некоторые автолюбители проверку производят при помощи воздушного пистолета. Во входное отверстие потихоньку дуют воздухом с небольшим давлением. Резкая подача недопустима, так как можно порвать мембрану. В исправном клапане шток должен начать двигаться, а корпус не сифонить.
Турбо хорош для всех ролей
Неважно, какого героя ты взял – у тебя в любом случае будет золото. Неважно, как много крипов ты добил – у тебя все равно будет ультимейт до пятой минуты
И это здорово! Люди в этом режиме спокойно берут саппортов, потому что знают, что им не придется ходить с голым ботинком до 25-й минуты.
А вот в классической Доте лично для меня играть за саппорта немыслимо. Как же это ужасно, когда ты сделал для керри идеальную линию, не воровал опыт, делал своевременные отводы, подготовил стаки – но вы проигрываете из-за того, что «БКБ – пустая трата денег». Влияние саппортов ограничено, зато в Турбо любой саппорт спокойно может стать керри без вреда для команды.
Кстати, в Турбо редко покупают Мидас и почти не пикают Течиса – герой просто не подходит для быстрых игр. Мне кажется, эти два факта уже говорят о крутости режима!
Дота в Турбо – игра, а не мучение
Никакого давления. Никаких сожалений по поводу проигранных матчей и потраченного времени. Никакой злости на тиммейтов. Только чистое наслаждение от процесса любимой игры.
Турбо превращает Доту в игру, похожую на шутеры. В Valorant, Counter-Strike и Fortnite раунды длятся пару минут, а затем начинается новый. Не пошла игра, тебя быстро убили? Ничего, через минуту начнешь все заново. В Турбо все плюс-минус также.
А вот в классической Доте – будь то рейтинг или обычный All Pick – если у вашей команды не пошло, то часто приходится терпеть 40-50 минут и ждать, пока противник снесет все три стороны. И только потом начинать новую игру.
Если же ты проводишь идеальную игру, но проигрываешь из-за союзников – невозможно не испытывать гнев. Ты потратил час своей жизни и сделал все идеально, но из-за сторонних факторов, на которые невозможно повлиять, ты проигрываешь. И это ужасное чувство.
Я могу понять юных людей, которые, возможно, хотят стать профессиональными дотерами – для них быстрые игры не подойдут. А для тех, кто играет в Доту для получения позитивных эмоций, Турбо – это идеальный режим. Но по какой-то причине почти все мои друзья или знакомые даже не рассматривают Турбо в качестве альтернативы обычной игре.
***
Турбина и ее влияние на надежность мотора
Когда-то было принято считать, что применение системы турбонаддува чуть ли не автоматически ведет к снижению ресурса двигателя на 30%.
Эксперты из «БР Турбо» это не подтверждают: по их словам, само по себе наличие турбины не влияет напрямую на надежность мотора.
И если раньше, когда производители двигателей просто ставили нагнетатели на изначально атмосферные моторы, турбины действительно пагубно влияли на их надежность, то сегодня уровень технологий таков, что моторостроителям удается увеличить КПД двигателей при сохранении их надежности именно благодаря турбинам.
«Современные двигатели с турбонаддувом разрабатываются с учетом нагрузок, свойственных именно турбомоторам, – рассказали „Движку“ в „БР Турбо“. – Вместе с тем ресурс всех современных двигателей из-за их сложности стал немного меньше, чем был раньше, вне зависимости от наличия турбины».
На вопрос же о том, сколько в среднем в состоянии «прожить» турбина в штатных условиях эксплуатации, однозначного ответа, по словам наших экспертов, нет. Однако можно выделить ряд факторов, существенно влияющих на ресурс турбонагнетателя. Один из главных – регулярность и качество технического обслуживания мотора
Не менее важно качество используемых при этом расходных материалов: фильтров и масла
Что касается регулярности техобслуживания, то рекомендации автопроизводителей обычно созданы на основе усредненных данных. В России же, в связи с тяжелыми условиями эксплуатации и пробками, масло редко выдерживает положенный ресурс, вследствие чего ухудшаются его свойства, и далее начинает резко снижаться ресурс турбины и мотора в целом. Поэтому применительно к замене масла в турбомоторах в нашей стране вполне работает принцип «чем чаще, тем лучше» (это же, впрочем, относится и к «атмосферникам»).
Турбокомпрессоры Garrett серии VNT с изменяемой геометрией турбины для дизельных (слева) и бензиновых (справа) двигателей
При этом турбированный двигатель весьма чувствителен к качеству самого масла: имеет значение, есть ли у него допуски автопроизводителя и соответствует ли оно требуемым параметрам, поскольку и мотор, и турбина разрабатываются с учетом свойств определенного масла. Именно поэтому масла, которые подходят, например, для японских автомобилей, могут быть губительны для немецких. И наоборот.
Кроме того, следует учесть, что вал в турбине работает в «масляном клину», то есть при работе турбины он не касается подшипников, так как между трущимися деталями образуется клин из масла. Если в масле есть загрязнения или абразив, оно слишком разжижено или, наоборот, в моторе образовался шлак от высоких температур, то начинается резкий износ подшипников скольжения. Таким образом, некачественное или с большим пробегом масло резко снижает ресурс турбины.
В целом, по словам специалистов «БР Турбо», если обслуживать автомобиль согласно рекомендациям автопроизводителя, то для легковых автомобилей ресурс турбины – от 250 тыс. км, для грузовиков – от 1 млн км. Если обслуживать автомобиль чаще – ресурс турбины можно увеличить на 20–40%.
Какие регионы России пострадают меньше от ядерной войны
По оценкам экспертов меньше всего пострадают территории с низкой плотностью населения. К таким относится прежде всего Сибирь. Поселки и города здесь находятся на огромном расстоянии друг от друга, при этом плотность населения в них очень маленькая. Даже если какие-то районы окажутся под ударом, люди смогут эвакуироваться в безопасные районы.
Кроме того, у Сибири имеется естественный щит — это природные богатства. Вряд ли кто-то захочет уничтожать и превращать в радиационную зону территорию, богатую золотом, нефтью и газом. Поэтому сибирская земля — это одно из самых удачных мест, где можно спрятаться от ядерной войны. О том, как себя вести во время ядерного взрыва, чтобы повысить шансы выжить, мы не так давно рассказывали.
Признаки поломок клапана управления турбиной
- Перерасход топлива – из-за неисправного актуатора горючее не догорает, и некоторая его часть выбрасывается через впуск.
- Нестабильность давления наддува – при засорении регулятора автомобиль набирает разгон рывками, также он и замедляется.
- Засор или повреждение комплектующих электронного регулятора – происходит, если из строя выходит воздуховод. Иногда причина кроется в клапане EGR или забитом воздушном фильтре. Выпускной коллектор и поршневая группа тесно связаны между собой. Поэтому при поломке одной системы, неполадки возникают и в другой. Страдает от этого и геометрия, а также вся механическая часть наддува.
- Сбои в работе мотора – когда актуатор заклинил, образовывается критический уровень давления. На панели приборов будет постоянно срабатывать лампочка-предупреждение.
- Износ зубьев на шестернях привода – появляются сложности с закрытием/открытием актуатора.
- Поломка деталей, а также рабочих узлов электромотора – створка работает некорректно, и вся система функционирует со сбоями. Тут уже необходима детальная проверка всех комплектующих системы турбонаддува.
Если появились вышеописанные признаки, нужно срочно проверить актуатор и другие компоненты системы наддува. По результатам проверки уже решать, что делать — выполнять ремонт или полностью менять клапан.
Две турбины на двигатель – как и зачем?
Сейчас может возникнуть вопрос, а вообще зачем? Все просто есть всего два вопроса, которые они призваны решать:
- Устранение турбоямы, можно сказать, что это первоочередная проблема.
- Увеличение мощности.
- Строение двигателя.
Начну, пожалуй, с самого простого пункта – это строение двигателя. Конечно, легко ставить одну турбину, когда у вас есть рядный двигатель на 4 или 6 цилиндров. Глушитель то один. Но вот что делать, когда у вас скажем V образный мотор? И по три – четыре цилиндра на каждую строну, тогда и глушителя два! Вот и ставят на каждый по турбине, средней или малой мощности.
Устранение турбоямы – как я уже писал сверху, это задача номер «1». Все дело в том что у турбированного мотора, есть провал — когда вы нажимаете на газ, отработанным газам нужно пройти и раскрутить крыльчатку турбины, именно это время и «проседает» мощность, это может быть от 2 до 3 секунд! А если вам на скорости нужно сделать обгонный маневр – это не безопасно! Вот и устанавливают различные турбины, а зачастую компрессор + турбина. Один работает на низких оборотах, то есть на старте, чтобы избежать «турбоямы», вторая – на скорости когда нужно оставить тягу.
Увеличение мощности – это самый банальный случай. То есть для увеличения мощности мотора, к маломощной турбине устанавливают еще одну мощную, таким образом — дуют они две, что значительно повышает производительность. Кстати на некоторых гоночных машинах, есть и три и даже четыре турбины, но это очень сложно и в серию, как правило не идет!
Вот собственно и решения, для которых применяют «ТВИНТУРБО» или «БИТУРБО» и знаете это реально выход, от избавления от турбоямы и увеличения мощности.
Суть вопроса
Многие современные автомобили используют такие технологии двигателей для увеличения используемого топлива. За счёт большего количества впрыскиваемого горючего, повышается общая скорость движения. Настоящая технология была известна ещё в ХХ веке — компоновку из двух труб называли Double Turbo, Twin-turbo и так далее. Сегодня они представлены как технологии твин-турбо и битурбо.
Что это значит
Biturbo представляет собой конструкцию турбонаддува, которая имеет вид двух турбин. Первая из них большого размера, а вторая уменьшенного. В то время как первая добавляет к двигателю мощный поток воздуха, меньшая турбина служит основным элементом для работы в среднем диапазоне скоростей. Такая система нацелена на более плавную работу ускоренного движения.
Конструкция twin-turbo больше ориентируется на прирост мощности, чем на стабильную работу автомобиля. По этой причине в ней используются две одинаковые турбины, которые воздействуют непосредственно на скорость движения.
Супертурбо: все продвинутые системы наддува
Обозначение Biturbo («двойная турбина») же относят к конструкциям, в которых применяются последовательно подключенные ко впуску две турбины-маленькую и большую. Маленькая хорошо работает на малой нагрузке, быстро раскручивается и обеспечивает тягу «на низах», а потом в действие вступает большая турбина, более эффективная на большой нагрузке. Маленькая турбина в этот момент отключается системой дроссельных заслонок.
Преимуществом такой схемы является большая эффективность одной большой турбины на большой нагрузке: она обеспечивает лучшее давление и меньший нагрев воздуха при большом ресурсе. А еще вместо маленького турбокомпрессора можно использовать механический или электронагнетатель. Они нагревают воздух меньше, чем турбокомпрессор, и не инерционны.
Но как же потери мощности, которые нужны для их раскрутки? Потери на их привод при малой нагрузке не так существенны. Но расплатой за улучшение характеристик турбин является усложнение впускной системы, приходится использовать много труб и дроссельные заслонки, переключающие потоки воздуха.
Обе технологии используются до сих пор всеми производителями, но все они значительно удорожают мотор, ведь дорогих турбокомпрессоров становится в два раза больше, а система управления ими — сложнее. Для сильно форсированных моторов альтернативы этим технологиям нет или почти нет. Но иногда можно просто улучшить конструкцию стандартной турбины.
Тонкое управление вастегейтом
Wastegate – это, дословно, «ворота для сброса», то есть перепускной клапан. На первых турбинах вастегейт работает очень просто: когда давление на впуске преодолевало натяжение пружины, он открывался, стравливал газы и давление падало. Позже систему усложнили: теперь его открытием руководила не только разница давлений, но и электроника, учитывающая множество параметров — обогащение смеси, режим движения, температуру, детонацию и умеющую избегать нежелательных режимов работы самой турбины. Но управлялся он точно так же — пневматикой. Когда нужно было сбросить давление, клапан просто открывался.
Перепускной клапан
Вначале wastegate срабатывал сразу после падения давления. Впоследствии задача для предпускового клапана была усложнена. Wastegate стал слушаться как давления, так и электронике, следящей за температурой и детонацией. Но управлялся переливной клапан пневматикой. Он открывался, когда надо сбросить избыточное давление.
Требуемые характеристики достигаются настройкой клапана. Из-за этого даже на малых оборотах турбина может функционировать очень эффективно. Основная «беда» такой технологии — сложность и ненадежность, выражающаяся в сильной вибрации и больших температур.
Ядерная война в России — какие города в опасности
Суть ядерной войны заключается в обмене ядерными ударами между странами. То есть, если Россия нанесет ядерный удар по США, Америка обязательно нанесет удар в ответ, и наоборот. Разумеется, информация о том, куда будут нанесены удары, держатся в секрете. Однако по мнению специалистов, США имеют четыре сценария нанесения ударов по России (Major Attack Option, или MAO).
Если война пойдет по первым двум сценариям (MAO-1 или MAO-2), по Москве удар не будет наноситься. Целью станут районы базирования шахт с боеголовками, места дислокаций ракетных войск стратегического назначения. Вместе с тем в уничтожены будут военные базы и аэродромы.
В первую очередь удары будут нанесены по местам базирования межконтинентальных баллистических ракет
Кроме того, удары будут нанесены по системам ПВО и станциям дальнего радиолокационного обнаружения. Под ударом может оказаться Иркутск, Красноярск, Армавир, Мурманск, Калининград и Санкт-Петербург.
Еще противник постарается нанести удар по промышленным городам, таким как Челябинск, Магнитогорск, Екатеринбург и Новосибирск. Не меньшая опасность касается городов, в которых расположены военно-морские базы. К ним относится Севастополь, Владивосток, Североморск и Калининград. По некоторым данным под ударом может также оказаться Нижний Новгород и Нижегородская область, так как на этой территории сосредоточено большое количество военных частей, училищ и предприятий ВПК.
Третий сценарий кардинально отличается от первых двух, так как главной целью ударов, согласно ему, является Москва. Уничтожение власти должно подорвать боевой дух армии. Согласно этому сценарию, по Москве будет нанесено несколько десятков ядерных ударов.
Один из сценариев США предполагает нанесение массированного ядерного удара по Москве
Четвертый сценарий подразумевает хаотичные ядерные удары по территории России, но с главной целью — уничтожение предприятий топливно-энергетического комплекса и ВПК. В таком случае удары могут быть нанесены по целому ряду городов, таких как Москва, Санкт-Петербург, Тула, Рязань, Самара, Курган, Кемерово, Барнаул, Бийск, Чита, Иркутск, Ангарск, Улан-Удэ, Пермь, Уфа, Ярославль, Воронеж, Тюмень, Екатеринбург, Красноярск, Челябинск, Владивосток и пр.
Следует понимать, что эти сценарии являются лишь предположением специалистов, а не планом, который в случае конфликта обязательно будет применен. Однако выглядят они вполне логично, и в них указаны города, которые действительно могут пострадать в случае военного конфликта. Надо сказать, что несколько лет назад Национальное управление архивов и документации США рассекретило цели для нанесения ядерных ударов, намеченные еще в середине прошлого века.
Согласно этому плану США должны были в первую очередь атаковать Москву, затем Нижний Новгород, потом Самару, Екатеринбург, Новосибирск, Омск и Саратов. Также в списке городов, по которым планировалось нанести удары, была Казань. Скорее всего эти города находятся в списке целей и в настоящее время.
Сибирь — самый безопасный регион России в случае ядерной войны
Вышеперечисленные варианты нанесения ударов могут быть актуальны в случае начала полномасштабной ядерной войны. Однако, по мнению экспертов, если Россия нанесет ядерный удар по Украине, ответ США может быть ограниченным. Предупреждающий удар может быть нанесен по Арктике или даже безлюдной Сибири. Однако не все согласны с этим мнением.
Генерал-лейтенант в отставке Бен Ходжес в издании Daily Mail сообщил, что США нанесут «сокрушительный удар» по российским военным и пригрозил уничтожением Черноморского флота. Правда, удар будет, скорее всего, не ядерным. Однако не обязательно быть экспертом, чтобы предугадать в таком случае эскалацию конфликта и в итоге полномасштабную ядерную войну.